Superradiance and Black Holes

or

How to Extract Energy from Black Holes and Discover New Particles

Masha Baryakhtar Perimeter Institute July 13, 2018

Outline

- Superradiance and rotating BHs
- Gravitational Atoms
- Signs of New Particles
 - Black Hole Spindown

Superradiance and rotating Black Holes

Will East, Superradiant Amplification of Gravitational Waves on a Kerr BH

BH spins down and *fastest-growing* level is formed

Once BH angular velocity matches that of the level, growth stops

BH spins down and *next* level formed; annihilations to GWs deplete first level

The following level has a superradiance rate exceeding age of BH

Black hole parameter space affected by superradiance of 10-11 eV axion

Black hole spin and mass measurements

Two black holes disfavor this axion mass

More constrained at lighter axion mass

Five currently measured black holes combine to set limit:

$$2 \times 10^{-11} > \mu_a > 6 \times 10^{-13} \text{ eV}$$

 $3 \times 10^{17} < f_a < 1 \times 10^{19} \text{ GeV}$

Black Hole Spins at LIGO

9-240 BBHs/Gpc³/yr. — 1000s of BHs merging in low-redshift universe —

14

Black Hole Spins at LIGO

If light axion exists, many initial BHs would have low spin due to superradiance, limited by age and radius of binary system

Gravitational Wave Signals Transitions between levels Annihilations to gravitons

 Signals coherent, monochromatic, last hours to millions of years

Gravitational Waves

Electromagnetic waves: displacement of charged particles

Gravitational waves: displacement of all matter

Gravitational wave strain
$$h = \left(\frac{4G_NP}{r^2\omega^2}\right)^{1/2} \sim \frac{\Delta L}{L}$$

Gravitational Waves

Advanced LIGO

Advanced VIRGO

Advanced LIGO and VIRGO already made several discoveries

Goal to reach target sensitivity in the next years

Gravitational Wave Signals Advanced LIGO sensitivity

- Fits into searches for **long**, **continuous**, **monochromatic** gravitational waves
- Currently looking for "mountains" on neutron stars

Transitions)~~>

- Integrating over BH masses and spins gives promising event rates
- Uncertainty dominated by BH formation rate and spin distribution

Annihilations

Uncertainty dominated by BH mass distribution at higher masses

Annihilations

 \geq

Will East, annihilations of vector field into GWs

Annihilations

- Mergers at LIGO: a black hole is born!
- Follow up with continuous wave search to see if superradiance creates a cloud of axions around the new BH
- Targeted searches especially promising at future GW observatories

Searching for New Particles

- Going beyond the Standard Model of particle physics — going to higher energies?
- Some of the outstanding problems motivate going to lower energies

Searching for New (Ultra)Light Particles

- Going beyond the Standard Model of particle physics — going to higher energies?
- Some of the outstanding problems motivate going to lower energies
- Dark matter, strong-CP problem,...
 QCD axion
 - Dilatons, moduli, dark photons, ...
 - Very weakly interacting
 - Long wavelength

Summary

- Rotational superradiance is a process that extracts energy from lossy, rotating objects
- Rotating black holes are unstable to superradiant energy loss in the presence of light fields
- Ultra light axions can be constrained or discovered by measurements of astrophysical black holes
- Independent of background density and coupling
- BH spin measurements exclude previously open parameter space
- Advanced LIGO may measure thousands of BH spins and provide evidence of a new light particle

Selection of (more or less) Pedagogical References

Classic references

- Y. B. Zel'Dovich. 1971. Soviet Journal of Experimental and Theoretical Physics Letters, 14, 180.
- Zeldovich, Rozhanskii, Starobinskii, Rotating Bodies and Electrodynamics in a Rotating Coordinate System, 1984
- Amplification of waves reflected from a rotating "black hole". Starobinsky, A.A. Sov.Phys.JETP 37 (1973) no.1, 28-32
- The Many faces of superradiance Bekenstein, Jacob D. et al. Phys.Rev. D58 (1998) 064014 gr-qc/9803033
- Perturbations of a rotating black hole. I- III Teukolsky, S.A. et al. Astrophys.J. 193 (1974) 443-461
- Extraction of energy and charge from a black hole Bekenstein, J.D. Phys.Rev. D7 (1973) 949-953
- Floating Orbits, Superradiant Scattering and the Black-hole Bomb Press, William H. et al. Nature 238 (1972) 211-212

Massive scalars around BHs

- Klein-gordon Equation And Rotating Black Holes Detweiler, Steven L. Phys.Rev. D22 (1980) 2323-2326
- Instability of the massive Klein-Gordon field on the Kerr spacetime Dolan, Sam R. Phys.Rev. D76 (2007) 084001 arXiv:0705.2880

Superradiance for new particle searches

- String Axiverse Arvanitaki, Dimopoulos, Dubovsky, Kaloper, March-Russell, Phys.Rev. D81 (2010) 123530 arXiv:0905.4720
- Exploring the String Axiverse with Precision Black Hole Physics Arvanitaki, Dubovsky, Phys.Rev. D83 (2011) 044026 arXiv:1004.3558
- Discovering the QCD Axion with Black Holes and Gravitational Waves Arvanitaki, Baryakhtar, Huang, Phys.Rev. D91 (2015) no.8, 084011 arXiv:1411.2263
- Black Hole Superradiance Signatures of Ultralight Vectors Baryakhtar, Lasenby, Teo, Phys.Rev. D96 (2017) no.3, 035019 arXiv:1704.05081
- Superradiant instability of massive vector fields around spinning black holes in the relativistic regime East, William E. Phys.Rev. D96 (2017) no.2, 024004 arXiv:1705.01544.